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Abstract—Edge computing has become a recent approach to
bring computing resources closer to the end-user. While offline
processing and aggregate data reside in the cloud, edge computing
is promoted for latency-critical and bandwidth-hungry tasks. In
this direction, it is crucial to quantify the expected latency reduc-
tion when edge servers are preferred over the cloud locations.
In this paper, we performed an extensive measurement to assess
the latency characteristics of end-users with respect to the edge
servers and cloud data centers. We also evaluated the impact of
capacity limitations of edge servers on the latency under various
user workloads. We measured latency from 8,456 end-users to
6,341 Akamai edge servers and 69 cloud locations. Measurements
of latencies show that while 58% of end-users can reach a nearby
edge server in less than 10 ms, only 29% of end-users obtain a
similar latency from a nearby cloud location. Additionally, we
observe that the latency distribution of end-users to edge servers
follows a power-law distribution, which emphasizes the need for
non-uniform server deployment and load balancing by an edge
provider.

Index Terms—Edge computing, Fog computing, Cloud com-
puting, Latency measurement.

I. INTRODUCTION

Growing real-time and cognitive computing applications in
daily life moves computing from the central clouds to the
network edge [22]. Together with the proliferation of low-
power mobile and Internet of Things (IoT) devices, this led
to an increase in the demand for computing platforms that
can offer low-latency and high-speed communication. While
cloud platforms offer dynamically scaled computing power
and fit well for compute-intensive jobs, they fall short to meet
QoS requirements of delay-sensitive workloads due to high
communication time. This is further exacerbated by the fact
that inter-AS communications exhibit highly dynamic path
selection behavior [9], causing fluctuations in network delay
for long haul connections. Therefore, while cloud computing
is effective in providing computing architectures at scale,
it is unable to meet stringent delay constraints of real-time
applications.

Edge computing has recently gained interest by bringing
computing resources closer to the end-user to provide low-
latency and high-bandwidth communication [12]. The shift
toward the edge is propelled both by technological constraints
of the centralized data centers and the last mile network
capabilities, as well as personal considerations of privacy [22].
As various computing and sensing devices are developed,

the variety of edge devices keep growing. The use cases
of the edge services include: (i) real-time applications such
as connected health, disability aids, and augmented reality;
(ii) cognitive computing tasks such as intelligent personal
assistants and machine learning for model training/inference;
(iii) smart homes to support peak demands from home devices;
(iv) video analytic/monitoring for prompt decisions at the edge
(e.g., crime detection or prevention, human-device interaction);
and (v) autonomous vehicles to support intermittent data
access or large data transfers.

Although cloud computing offers high-capacity and reli-
able services, communication overhead with the cloud may
deteriorate the user experience by increasing latency and
power consumption. On the other hand, edge servers may
lack the capacity to satisfy stringent resource requirements
of applications. Hence, complementing edge devices with on-
demand cloud services emerged as a potential solution to
take advantage of both and improve quality of experience.
While offline processing and aggregate data could reside in
the cloud, latency-critical and bandwidth-hungry tasks can be
processed at the edge. Researchers found that opportunistically
offloading computation tasks to edge servers improve mobile
device battery lifetime compared to the cloud and minimize
execution time compared to the mobile device [10]. Another
study showed that processing mobile applications with the
support of the edge platforms speedups applications up to
20 times while reducing energy consumption by 5% [3].
Similarly, performing face recognition at the fog could reduce
the response time by 81% [18].

In this paper, we emulate an edge-cloud integrated service
scenario using over 8.5k RIPE Atlas nodes to comprehensively
assess latency variations for users when they direct their
requests to edge servers and cloud data centers. To the best of
our knowledge, this work is the first large-scale measurement
to quantify the latency benefits when widely deployed edge
servers are used instead of cloud data centers.

The major contributions of this paper are:
• We perform large-scale latency measurements from 8,456

end-users to 6,341 edge servers and 69 cloud locations.
• We run a detailed analysis of the edge computing latency

for end-users with and without cloud support.
• We share the latency measurements at github.com/
netlab-stevens/cloud-edge-latency.



In the rest; Section II describes the details of measurement
study. Section III compares latency of edge servers and cloud
locations. Section IV analyzes the impact of limited edge
servers on supporting end-user demands. Section V presents
related work, and SectionVI concludes the paper.

II. MEASUREMENT SETUP

In this section, we describe our experimental setup to mea-
sure network latency for edge servers and the cloud providers.
We utilized Ripe Atlas nodes around the globe to represent
end-users, Akamai servers as edge servers, and major compute
cloud providers as cloud locations. We measured the round
trip time (RTT) from 8,456 vantage points to 6,341 edge
servers and 69 cloud locations. In the rest of the paper, we
use vantage point and end-user interchangeably. Each latency
measurement contains five pings from a vantage point to an
edge server and each cloud location. The median RTT of five
measurements is used as the representative latency for the
measurement. Note that, even though Ripe Atlas has more
than 10,000 nodes we observed that only portion (i.e., 8,456)
of these nodes are continuously active. Thus, we were able
to continuously measure latency to all edge and cloud servers
from 8,456 vantage points during our measurement campaign.
After all measurements, we removed ones where destination is
unreachable or vantage point is not available for measurements
to all destinations (i.e., an edge server and all cloud locations).
Table I tabulates the number of end-users (i.e., RIPE Atlas
nodes), edge servers (i.e., Akamai servers), and cloud locations
in each continent. We observe that end-users, edge servers, and
clouds are concentrated in America and Europe, with the least
being in Africa.

A. Edge Measurements

To model edge computing deployment, we adopted Akamai
servers in our measurements. Although Akamai was deployed
as a content distribution network (CDN), it has re-focused
as an edge computing platform [14]. Akamai currently has a
quarter of a million edge servers deployed around the world.
Hence, large-scale edge server deployment use cases can be
emulated based on Akamai servers [11]. We selected three
popular Akamai customer web sites (i.e., Apple, Microsoft,
and Yahoo) to discover the closest Akamai server to end-users.
Note that not all Akamai servers cache a particular web site,
so we observed only 6,341 of the Akamai servers from our
vantage points in the measurements.

TABLE I: End-users, edge servers, and cloud locations in each
continent

America Europe Asia Oceania Africa Total
Users 1,394 5,419 1,193 238 212 8,456
Edge 2,218 2,210 1,338 331 244 6,341

Clouds 29 20 14 6 0 69
Amazon AWS 6 4 4 1 0 15
Google GCP 6 5 4 1 0 16
IBM Cloud 9 6 5 2 0 22

Oracle Cloud 5 4 0 1 0 10
Rackspace 3 1 1 1 0 6

Since the location and IP of Akamai servers are not
public, we rely on Akamai’s own mechanism to find the
closest server for each request initiated from an end-user.
Akamai’s mechanism works as follows: let’s assume a
user wants to access the Microsoft Office website and
initiates a request to office.microsoft.com, which is
served by Akamai servers. The request first tries to resolve
an IP address for the office.microsoft.com and
queries its local DNS server (LDNS), which contacts its
name server. The name server returns a canonical name,
officecdn.microsoft.com.edgesuite.net.
Then LDNS performs name translations on the
officecdn.microsoft.com.edgesuite.net to
obtain the IP address of a nearby edge server that contains a
cached copy of the office.microsoft.com. Note that,
edgesuite.net is a domain owned by Akamai. For a
detailed explanation of Akamai redirection mechanism please
see [16].

In our measurement, to obtain IP address of the closest
edge servers (i.e., Akamai server) to end user we initiated
a request to three Akamai customers (i.e., Apple, Microsoft,
and Yahoo) from each end user. We used canonical names of
customers appldnld.apple.com.edgesuite.net for
Apple, officecdn.microsoft.com.edgesuite.net
for Microsoft, and a943.x.a.yimg.com for Yahoo, to
ensure that an IP address returned from DNS name translation
belongs to the Akamai, and not to some centralized Akamai
customer’s (i.e., Apple, Microsoft, and Yahoo) server. Su et
al. [2] observed that median redirection time for Akamai is
below 100 seconds. Thus, we used 120 seconds as the time
interval between two measurements to avoid DNS caching
when making name translation on canonical names. For each
of the three Akamai customer we repeated the experiment two
times to obtain IP addresses of the servers close to each end-
user.

We discovered 6,341 edge servers for 8,456 end-users after
mapping the closest edge servers to each end-user. Table I
presents the distribution of edge servers (i.e., Akamai servers)
per continent. Note that as we only observed a fraction of
Akamai servers, the latency results for edge servers is a lower
bound measurement for the Akamai. While we can precisely
measure latency to each cloud location, we only reach a
fraction of about 240,000 Akamai servers that are located in
17,000 AS networks. Table II presents the percentage of end-
users reaching to a particular number of edge servers. As we
performed measurements to three different websites hosted by
Akamai for two measurements, each end-user can see up to
six different servers. While most end-users discovered 4 to 6
servers, some users only observed 1 or 2 distinct IPs.

TABLE II: End-users observing a number of edge servers

Observed servers 1 2 3 4 5 6
End-user % 1.3 2.9 16.5 23.9 31.3 24.1



B. Cloud Measurements

We selected five popular compute cloud service providers
(i.e., Google, Amazon AWS, Rackspace, Oracle, and IBM) to
perform cloud measurements. Among popular providers, we
excluded Microsoft Azure. Azure load balancer drops ICMP
packets, and hence we could not obtain RTT measurements.
Table I tabulates the number of data centers in each continent.
Note that, at the time of these experiments, none of the
measured cloud providers had a datacenter in Africa. Com-
mon locations of the datacenters include Seoul, Singapore,
Tokyo and Hong-Kong for Asia; Frankfurt, London, Paris and
Amsterdam for Europe; Sao Paola, California, North Virginia
and Texas for America; and Sydney for Oceania.

We performed measurements from each end-user (i.e., RIPE
Atlas vantage point) to a particular cloud location by deploy-
ing an instance in each data center of the cloud provider.
We measured the latency from each end-user to all cloud
instances. Then, we picked the minimum of all instances as
the latency between the user and the cloud provider. Note that
cloud providers may have multiple zones inside a location.
For example, region us-central1 in Google Cloud has zones
us-central1-a, us-central1-b, us-central1-c, and us-central1-f.
Since the latency between zones in the same region is usually
negligibly small, we measured the latency of only one zone
for regions with multiple zones.

III. CLOUD-EDGE LATENCY COMPARISON

In this section, we compare the latency of cloud locations
and edge servers to each end-user. We use labels C1-C5 instead
of the actual cloud provider names to keep the focus on
the edge-cloud comparison and its implications rather than
ranking cloud providers. We analyze the latency of edge
servers compared to all locations of a cloud provider.

Observation 1: Cloud providers prefer similar locations to
deploy data centers. As a result, end-users experience negligi-
ble latency enhancement by using multiple cloud providers.

Figure 1 shows the latency comparison of a user to the
edge and individual cloud providers. While 55% of end-users
can find a nearby edge server with less than 10 ms latency,
this value reaches to 82% with 20 ms latency. However,
for individual cloud providers, the user coverage ratio varies

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 10 100 1000

C
ov

er
ed

 U
se

r R
at

io

Median Latency (ms)

Edge
C1
C2
C3
C4
C5

Fig. 1: User latency coverage (CDF)

between 3%-21% and 22%-52% for 10 ms and 20 ms latency
ranges, respectively. We also combined all cloud providers as
if they were a single provider. Even in this case, the user
coverage ratio improves slightly to 27% (for 10 ms latency)
and 62% (for 20 ms latency). We believe this is because data
centers of different cloud providers are in nearby locations
such as Sao Paola, California, and Texas in America.

Interestingly there are some end-users with unexpected
latency to edge and cloud servers. For instance, we observed
that 12 end-users had a latency of more than 250 ms to the
closest edge server. Similarly, for cloud providers, there are 6
to 14 end users with a latency larger than 250 ms. They are
unexpected latencies because network latency on equatorial
circumference is around 200 ms [7]. These cases might be due
to Ripe Atlas nodes connecting through a VPN or a middlebox,
or network misconfiguration.

Observation 2: Compared to the cloud, edge servers offer
lower latency to 92% end-users.

We also measured the latency difference between edge
servers and cloud providers for all end-users. In Figure 2,
the x-axis indicate the range of latency difference between
end-user to cloud and edge. Negative values indicate that a
cloud provider location is closer to the end-users than edge
servers. For example, the value of (-100,-10) refers to end-
users for which the latency of the closest edge server is 10 to
100 ms greater than the latency of the closest cloud provider
location. Note that the buckets are increasing in size, and the
center bucket indicates latency difference less than 1ms. We
observe that edge servers provide smaller latency to 92% to
97% of end-users compared to different cloud providers. For
significant majority of end-users, edge servers are closer than
cloud providers with a latency difference of 10 to 100 ms.

Latency characteristics might differ among regions such as
Europe and Asia. Thus, it is important to analyze regional
difference in observed latency. Figure 3 further shows user
coverage comparison in each continent between edge servers
and all cloud locations combined. In Africa, the difference in
user coverage is considerably large because there are no cloud
datacenter in Africa. Similar behaviour is observed for Oceania
as there are up to two datacenters for any cloud provider. In
Americas and Europe, cloud has the best coverage compared
to the edge servers.
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Fig. 2: Latency difference of end user to cloud and edge
(negative values correspond to lower cloud latency)
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Fig. 3: User coverage by continent for edge servers and combined cloud providers

Observation 3: Regional latency analysis reveals that cloud
locations can match the performance of edge servers where
data centers are abundant such as in West Europe.

Figure 4 compares the latency difference of cloud provider
C1, the best provider in terms of user latency, and edge
servers for each individual end-user. The x-axis shows the
end-users partitioned by continent and ranked by the latency
difference. The y-axis shows the latency difference in a log-
scale. Note that y=1 ms indicates a latency difference of
less than 1 ms in either direction due to the log-scale of
the figure. Results for other clouds had similar distributions
with C5 having the highest latency values. We observe that
latency between end-users to edge servers is considerably
lower than latency between end-users to cloud locations. In
all continents, however, there exists a small number of end-
users for which the latency to the C1 cloud is much smaller
than to the closest edge server. This difference might be due
to the lack of edge servers (i.e., Akamai servers) close to the
end-users. We also noticed that some of our end-users are
actually hosted by the C1 cloud, thus they yield a considerably
smaller latency to the cloud in those measurements. In Europe,
a non-negligible portion of end-users observes a small latency
difference between edge servers and cloud locations.

When we analyze Europe in detail we observe that average
latency difference of edge servers and combined cloud is
around 10 ms except Western Europe where the difference
is even smaller. Note that many of the cloud locations are
located in the Western Europe such as Frankfurt, London, Paris
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Fig. 4: Latency comparison of best performing cloud provider
C1 and edge servers. The x-axis shows the end-users parti-
tioned by continent and ranked by the latency difference.

and Amsterdam and hence end-users in the Western Europe
observe a smaller latency difference between the edge and the
cloud. Lack of coverage of cloud providers in some continents
amplify the need for edge servers in those locations to improve
quality of service for end-users.

Overall, we observe that edge servers can provide better
latency to a significant majority of end-users than the cloud
providers. While the cloud can provide comparable latency in
certain regions (e.g., West Europe), more than 95% of end-
users are better served by the edge servers, in some cases by
order of magnitude. These findings confirm that edge servers
are well-suited for latency-critical applications.

IV. IMPACT OF LIMITED RESOURCES

In this section, we analyze the impact of limited resources
of edge server on observed latency.

Observation 4: Latency-based distribution of end-users to
edge servers follows power-law, requiring non-uniform server
deployment to avoid hot spots and increase the quality of
experience for end-users.

Cloud datacenters encapsulate thousands of servers de-
ployed in one location [13]. This gives imagination of the
unlimited resource capacity in cloud datacenters. Although
edge servers offer significant latency improvement over the
cloud, capacity limitations of edge servers may prevent user
requests to be completed, especially in densely populated
areas. Figure 5 shows the distribution of edge servers to end-
users when each end-user is assigned to the closest edge server.
In total, out of 6,341 edge servers, only 2,855 are closest for
at least one end-user while the rest have longer latencies to
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Fig. 5: Distribution of end-users to edge servers



end-users. We observe a power-law distribution where 1,624
edge servers are the closest to only one end-user (i.e., x=1)
while an edge server is the closest to 81 end-users. Power law
exponent of α = 2.78 falls in the typical ranges for scale-free
networks. As a result, some end-users might be directed to a
more distant edge server (or a cloud location) when the closest
edge server does not have sufficient resources available for the
user workload.

To analyze the impact of limited resources of edge servers
under different user workloads, we used a public Google
cluster workload trace dataset [4]. The dataset previously
used in [20] to represent edge node capacities, [19] used
the dataset to evaluate COSTA a task offloading model in
mobile-edge computing, and [8] used it to evaluate Dedas
online deadline-aware dispatching and scheduling algorithm
for edge computing. It is important to note that while server
specifications and workload characteristics of Google cloud
traces could potentially be different from genuine edge server
properties and edge user workload. Yet, this emulation is
valuable to assess the impact of capacity limitations under
high traffic scenarios as, to best of our knowledge, it is the
most relevant public dataset that provides both user workloads
and server capacities measured from a real system.

Anonymized and normalized traces of the dataset contain
server specifications (i. e., CPU, RAM, and disk capacity) for
12,583 servers and 437,377 user requests (i.e., CPU and RAM
requirements, arrival time, and job duration) which we will
also refer as user workload, for over a month. Servers in the
Google cluster traces are located in one particular datacenter.
To resemble the edge scenario and distribute the centralized
servers, we assigned CPU and memory capacity from the
traces to each edge server (i. e., Akamai server). Then we
assigned each user request from traces to one end-user (i.e.,
Ripe Atlas node).

The workload can be increased by dividing the start time
of the user requests. Since each user request is mapped to
one end-user, the number of active end-users at a given time
will also increase. Note that, the start time and the duration of
a user request is provided by the traces. We considered low
and high workload cases in which low workload has less than
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Fig. 6: User latency coverage under low and high workloads

10,000 active user requests at a given time and high workload
has more than 100,000 user requests. We believe that a high
workload can be expected in metro cities with a large number
of end-users. Figure 6 presents user latency coverage when
an edge is complemented with cloud (i. e., Edge with C1)
and when it is not supported with cloud (i. e., Limited Edge)
thus, have limited capacity. While 59% of user requests can
be served with a latency of less than 10 ms with the support
of C1 under low workload, the ratio falls below 40% as the
workload intensifies to higher levels. When there is no cloud
support, the proportion of the covered users does not reach to
100% as some users cannot be scheduled to any edge server in
their vicinity. This implies that supporting edge servers with
resource-rich cloud locations can be a viable option to address
the resource limitations of edge servers.

Combined with the result from Figure 5, where we observed
a power-law distribution of edge server reachability from end-
users, we can conclude that it is necessary to consider edge
server capacity and intensity of user demands to mitigate over-
subscription of edge servers. Another approach to address
congested edge servers is to complement them with cloud
locations that have a much higher CPU and memory resources.

V. RELATED WORK

There have been measurement studies focusing on the
latency of communication of remote computing services. [1]
comparatively analyzed latency toward four cloud providers
from 200 PlanetLab nodes and observed that the number of
data centers and their locations play a crucial role in latency.
[2] showed that Akamai redirections overwhelmingly correlate
with network latency on the paths between clients and the
Akamai servers. [24] analyzed the benefits of switching from
a single-cloud to a multi-cloud deployment and showed that
20-50% of IP prefixes would reduce their latency to the closest
data center by more than 20%. Choy et al. [15] investigated
the impact of augmenting the cloud infrastructure with servers
located near the end-users in the on-demand gaming industry.
They showed that adding a small number of servers in new
locations increases user coverage significantly. Authors found
that Amazon AWS EC-2 is capable of providing a median
latency of 80 ms or less to fewer than 70% of end-users. By
adding 300 servers at different networks, they showed that
the ratio of covered users increases by 28%. Similar study
was conducted by Zhang et al. [21], in which they propose
EdgeGame that offloads the video rendering of the mobile
games to the edge servers instead of cloud. In evaluation,
authors use servers deployed in the central part of China as
cloud data center and servers deployed in the same city with
end users as edge nodes. The experiment results show that
EdgeGame can reduce the average network delay by 50 per-
cent and improve the user’s QoE by 20 percent. Finally, Wang
et al. [5] compares the Cloud Content Delivery Networks
in terms of the performance and cost for video streaming.
They use PlanetLab to conduct measurements and evaluate
three cloud CDNs including Amazon Web Service (AWS)
CloudFront, Microsoft Azure Verizon CDN, and Google Cloud



CDN. The results show that cloud vendors vary in providing
QoE across regions, the QoE provided by one CDN can change
over time, cloud CDNs vary in scalability, and finally some
cloud CDN is more economical than others given certain cache
hit rate.

Chang et al. [6] propose an edge cloud to augment cloud
data centers with service nodes placed at the network edge
to improve the performance of latency-sensitive applications.
The edge cloud helped 3D indoor localization and video
surveillance applications by yielding better latency and band-
width utilization. Yi et al. proposed LAVEA, an edge com-
puting platform for low-latency video analytics [17]. The
results show that client-edge configuration has led up-to 4x
speedup compared to client-cloud configuration. Furthermore,
they investigate three task placement schemes for inter-edge
collaboration and observed that the shortest scheduling latency
first has the best overall task placement performance compared
to the shortest transmission time first and the shortest queue
length first schemes. Our latency analysis sheds further light on
how much latency improvement can be enhanced by selecting
the closest edge device in a global deployment. Zhuo et al.
[23] analyze the performance of seven applications in terms of
latency when they are offloaded to edge computing platforms
with different configurations. They showed that offloading to
cloud incurs an additional 100 to 200 ms latency compared to
offloading to a nearby edge device.

While previous works focused on latency analysis mostly on
specific domains, technology, or use cases; this study presents
a comprehensive measurement from around 8,500 end-users
toward 6,300 destinations; provides detailed analysis of the
latency observed by end-users on different regions and with
genuine user resource request data; and explores the impact
of limited capabilities of edge platforms compared to the
resource-rich cloud under different user workloads.

VI. CONCLUSION AND FUTURE WORK

In this paper, we performed a large-scale measurement
to compare the latency from end-users to edge and cloud
providers. Our results confirm that edge servers can pro-
vide considerably lower latency than cloud locations for the
significant majority of the end-users. The results, however,
also indicate that solely latency-oriented assignment of user
requests to edge servers leads to power-law load distribution.
Few of the edge servers are closest to many of the end-users,
while a large number of edge servers are located nearby to
only a couple of end-users. We further extended our study by
analyzing the impact of the edge server capacity limitations on
observed latency using a sample from Google cloud workload
traces. Results indicate that edge servers either need to be
provisioned to handle increasing user workloads in certain hot
spots or backed by the cloud to ease user over-subscription.

As future work, we plan to develop efficient resource alloca-
tion algorithms for edge platforms, which may be supported by
cloud locations. We also plan to develop a brokerage service
which can direct user request to available edge server or cloud
location based on the QoS metrics such as latency, bandwidth,

power, and cost. Such a service will enable edge providers
to market their excess capacity and allow users to access
resources within expected QoS conditions.
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